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Abstract. Crack growth in a medium with both elastic and plastic behaviour is simulated 
by means of a discrete model. The system interpolates between a purely elastic case, in 
which cracks develop a fractal structure, similar to that found in other growth models, and 
purely elastic deformations, where crack propagatidn can be reduced to the Eden model. 

The nature of the processes which determine crack formation and growth in materials 
is far from understood (see, for instance, Englman and Jaeger (1986)). Simple models, 
based on analogies with growth mechanisms proposed for other physical systems, may 
prove useful and give some insight into this complicated phenomenon. In this letter, 
we will extend previous studies by two of us (Louis and Guinea 1987) on a model of 
mechanical breakdown for purely elastic materials, to include plastic effects as well. 
The crack patterns generated are presented and analysed numerically. From a theoreti- 
cal point of view, it is worth remarking that the model to be studied includes, as 
opposite limits, two situations of interest in the physics of growth processes: in the 
absence of plasticity, we have the mechanical breakdown model already mentioned, 
which is the vectorial counterpart of diff usion-limited aggregation (Witten and Sander 
1983) and dielectric breakdown (Nimeyer et al 1984); with no elastic effects, our system 
reduces itself to the Eden model of cluster growth (Eden 1961). Our model is a 
two-dimensional, triangular lattice of springs which simulates, in the continuum limit, 
an isotropic material. The response of each spring under an applied stress is linear. 
The springs near the surface of a crack have a finite probability of failing, which is 
linearly proportional to their deformation. Once they fail, they continue to exert a 
force on the remaining bonds, which is a fixed fraction, a, of the stress they stored at 
the moment of failure, as shown in figure 1. When a = 0, this scheme is equivalent to 
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Figure 1. Force exerted by a given spring as function of its deformation. d,  gives the 
maximum deformation before failure and plastic behaviour. 
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the removal of the bond which failed, i.e. the model of mechanical breakdown. This 
case describes a very brittle material, perfectly elastic up to a threshold where it loses 
completely its ability to support stresses. For a = 1, the response of each bond is in 
accordance with that predicted by the theory of a purely plastic material. 

To analyse crack propagation,, an external hydrostatic pressure is applied on the 
boundaries of the lattice, to create a finite stress distribution in its interior. Then, a 
bond in the centre of the sample is made to fail. This modifies the local stress 
distribution, and the position of the lattice nodes are changed to achieve the new 
equilibrium configuration. The stresses in the bonds near the one which failed are 
calculated, and one of them is chosen randomly, with probability proportional to the 
absolute value of its deformation; this bond is again made to fail, and the size of the 
crack grows. We iterate this procedure until the surface of the crack is close enough 
to the edge of the lattice (usually 10-12 bond lengths, for triangular lattices of side 

When a = 0 we recover the case previously studied (Louis and Guinea 1987) of 
mechanical breakdown (see also Meakin et al 1988). The crack patterns have a fractal 
dimension of approximately 1.65, and the overall shape is similar to DLA aggregates, 
which is the scalar analogue of this model. The case a = 1 can be understood by a 
simple picture. The bonds are in equilibrium prior to the formation of the crack. As 
the force exerted by each failed bond remains exactly the same as it was before failure, 
the lattice never deviates from equilibrium. Thus the stress distribution is always the 
same and is fixed by the initial boundary conditions. Hydrostatic pressure induces 
homogeneous stresses within the material, so all bonds are subjected to the same 
deformation. The probability for any given bond to fail is equal to that for any other. 
All bonds at the surface of the crack have the same growth probability; this is the 
definition of the Eden model of cluster growth (Eden 1961). The resulting shapes have 
dimensions equal to the space dimension in which they are embedded, in our case 
D = 2, although the surface can have a complex structure (Freche et al 1985). Changes 
in the value of a smoothly interpolate between these limits. 

Results for a = 0,0.25,0.5,0.75 and 1 are shown in figure 2. The patterns always 
have a very homogeneous structure, and can be well characterised by their fractal 
dimension 0, which varies between 1.65 and 2, as expected. We use a linear fit in a 
log-log plot to define 0, with very good correlations (see figure 3). 

In the continuum limit, the lattice is replaced by an elastic medium with Lam6 
coefficients which satisfy A / p  = 1. The internal stresses are determined by the applied 
pressure and by the boundary conditions at the edges of the crack. We can define 
them in terms of local coordinates, given by the normal and parallel directions to the 
crack surface. The inner portion of the crack does not completely lose its ability to 
sustain stresses, and it exerts forces on the elastic part which has not failed. These 
forces are a finite fraction of those existing before failure; .a simple continuum limit 
which satisfies this criterion can be obtained by assuming that the rate of change of 
the forces acting across a given surface element, ds, is a constant fraction of the force 
itself 

120- 140). 

a h ( & )  1 - a  
dn a 

- i = x, y .  

When a = 0 this equation can only be satisfied if F, = 0, i = x, y ,  i.e. the boundary 
condition near the edge of a void in an elastic medium, in accordance with the 
mechanical breakdown model. In the opposite limit, a = 1, we obtain equations similar 
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Figure 2. Crack patterns for different values of a. 
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Figure 3. Log-log plots of  the number of failed bonds as function of distance to the centre 
of  the pattern for the realisations shown in figure 2 (the case a = 0 is excluded). 

to the equilibrium conditions for a volume element of an elastic medium (Landau and 
Lifschitz 1966); in particular, the initial stress distribution, which is constant in space, 
is always a solution. Thus, the equilibrium is never disturbed and the stresses remain 
unchanged throughout the calculations. The growth probability is equal at all points 
of the edges of the crack and we recover the Eden model. In terms of the components 
of the stress tensor, projected along the local normal and parallel directions to the 
surface of the fracture zone, equation (1) can be written as 

aln(a,,) 1-a  
an a 

a ln(a,,) 1 - a  
an a 

-- - 

-- - 

To complete the continuum equations, the velocity of growth of a point of the 
surface is proportional to the tangential stresses acting on it: 

V" (+pp . (3) 
This equation resembles closely the conventional DLA model and the mechanical 

breakdown model; on the other hand, it underlines the difference between the present 
calculation and other schemes used to simulate more dilute aggregates and dendritic 
growth (Navas et al 1988, Nittman and Stanley 1986). In the latter cases, the velocity 
of growth is made to be proportional to a higher power of the stress. 

In conclusion, we present a model of crack formation in elastoplastic materials. 
The similarities and differences with other growth models of current interest are 
discussed. A continuum model is proposed to describe the main features of the 
calculations, and facilitate analytical studies. While the present scheme is still too 
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simple to describe the rich phenomenology of fracture in real materials, we think that 
it provides a starting point to develop further its theoretical understanding. 
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